metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-aminopyridine)dibenzoatocobalt(II)

Wen-Zheng Ju, Rui-Hua Jiao, Ping Cao and Rui-Qin Fang*

Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: fangrq326@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.031 wR factor = 0.086 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $[Co(C_7H_5O_2)_2(C_5H_6N_2)_2]$, contains Co^{II} cations bonded to two bidentate benzoate ligands and two 2-aminopyridine ligands, resulting in highly distorted *cis*- CoN_2O_4 octahedra. The crystal structure is stabilized by N- $H \cdots O$ hydrogen bonds.

Comment

Cobalt complexes are of great interest in coordination chemistry in relation to catalysis and enzymatic reactions, magnetism, and molecular architectures (Billson *et al.*, 2000; Fritsky *et al.*, 2003; Kotera *et al.*, 2003). Cobalt complexes with benzoic acid and various *N*-heterocyclic compounds or amines have been reported (Brechin *et al.*, 1996; Saussine *et al.*, 1985; Singh *et al.*, 2005; Yamami *et al.*, 1997). As an extension of this work, the crystal structure of the title compound, (I) (Fig. 1), is reported here.

The Co^{II} ion in (I) is six-coordinated by four O atoms from two bidentate benzoate ligands and by two N atoms from two 2-aminopyridine molecules, resulting in a highly distorted *cis*-CoN₂O₄ octahedron (Table 1). The C–O bond lengths indicate that the negative charges of the benzoate $-CO_2^-$ groups are completely delocalized. The acute Co–O–C bond angles cover the narrow range from 86.95 (9) to 91.49 (8)°.

In the crystal structure, the stabilization of (I) is supported by $N-H \cdots O$ hydrogen bonds (Table 2).

Experimental

A mixture of CoCO₃ (0.3 mmol, 35.7 mg) and benzoic acid (0.1 mmol, 12.2 mg) in a H₂O–EtOH solution (2:1 ν/ν , 20 ml) was heated with stirring for 1 h in an open beaker, then 2-aminopyridine (0.1 mmol, 9.4 mg) was added. The solution was heated for 30 min and the

© 2006 International Union of Crystallography All rights reserved

Received 31 March 2006

Accepted 1 April 2006

remaining solid phase was filtered off. After allowing the solution to stand in air for 5 d, red block-shaped crystals of (I) were formed on slow evaporation of the solvent. Analysis found: C 58.88, H 4.56, N 11.47%; calculated for $C_{24}H_{22}CoN_4O_4$: C 58.90, H 4.53, N 11.45%.

Z = 8

 $D_x = 1.373 \text{ Mg m}^{-3}$

 $0.28 \times 0.23 \times 0.16 \text{ mm}$

19355 measured reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0529P)^2]$

+ 1.2499*P*] where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.018$ $\Delta\rho_{\text{max}} = 0.37 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

5137 independent reflections

4599 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.76 \text{ mm}^{-1}$

T = 293 (2) K

Block, red

 $R_{\rm int}=0.018$

 $\theta_{\rm max} = 27.0^{\circ}$

Crystal data

 $\begin{bmatrix} Co(C_7H_5O_2)_2(C_5H_6N_2)_2 \end{bmatrix} \\ M_r = 489.39 \\ Monoclinic, C2/c \\ a = 25.097 (5) Å \\ b = 10.991 (2) Å \\ c = 17.499 (3) Å \\ \beta = 101.28 (3)^\circ \\ V = 4733.7 (15) Å^3 \end{bmatrix}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.815, T_{\max} = 0.888$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.086$ S = 1.045137 reflections 298 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Co1-N3	2.0579 (14)	Co1-O3	2.1746 (12)
Co1-N1	2.0644 (14)	C1-O1	1.2680 (18)
Co1-O4	2.0726 (11)	C1-O2	1.2638 (16)
Co1-O2	2.1150 (13)	C8-O3	1.2625 (16)
Co1-O1	2.1268 (11)	C8-O4	1.2643 (17)
O2-Co1-O1	61.99 (4)	C1-O2-Co1	89.64 (9)
O4-Co1-O3	61.79 (4)	C8-O3-Co1	86.95 (9)
C1-O1-Co1	89.00 (8)	C8-O4-Co1	91.49 (8)
$\begin{array}{c} Co1 - O2 \\ Co1 - O1 \\ O2 - Co1 - O1 \\ O4 - Co1 - O3 \\ C1 - O1 - Co1 \\ \end{array}$	$\begin{array}{c} 2.1150 (13) \\ 2.1268 (11) \\ 61.99 (4) \\ 61.79 (4) \\ 89.00 (8) \end{array}$	C8-03 C8-04 C1-02-Co1 C8-03-Co1 C8-04-Co1	1.2623 1.2643 89.6 86.9 91.4

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N4−H4C···O1	0.90	2.08	2.9536 (19)	164
$N4-H4B\cdots O3^{i}$	0.90	2.17	2.9791 (17)	150
$N2-H2B\cdots O4$	0.90	1.98	2.849 (2)	161
$N2-H2A\cdots O2^{ii}$	0.90	2.12	2.9178 (18)	147
$N_2 - H_2 A \cdots O_2$	0.90	2.12	2.9178 (18)	147

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) -x, -y, -z.

All H atoms were placed in idealized positions (C–H = 0.93–0.97 Å and N–H = 0.90 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(N)$.

Figure 1

The structure of (I), showing 35% probability displacement ellipsoids (arbitrary spheres for the H atoms).

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXL97*.

References

- Billson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000). Inorg. Chem. Commun. 3, 718–720.
- Brechin, E. K., Harris, S. G., Parsons, S. & Winpenny, T. E. P. (1996). Chem. Commun. pp. 1439–1440.
- Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). *Inorg. Chim. Acta*, **346**, 111–118.
- Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. & Handa, M. (2003). Inorg. Chem. Commun. 6, 322–324.
- Saussine, L., Brazi, E., Tobine, A., Mimoun, H., Fischer, J. & Weiss, R. (1985). J. Am. Chem. Soc. 107, 3534–3540.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Singh, U. P., Babbar, P. & Sharma, A. K. (2005). Inorg. Chim. Acta, 358, 271– 278.
- Yamami, M., Tanaka, M., Sakiyama, H., Koga, T., Kobayashi, K., Miyasaka, H., Ohba, M. & Okawa, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4595–4601.