Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wen-Zheng Ju, Rui-Hua Jiao, Ping Cao and Rui-Qin Fang*

Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: fangrq326@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.086$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(2-aminopyridine)dibenzoatocobalt(II)

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$, contains $\mathrm{Co}^{\mathrm{II}}$ cations bonded to two bidentate benzoate ligands and two 2aminopyridine ligands, resulting in highly distorted cis$\mathrm{CoN}_{2} \mathrm{O}_{4}$ octahedra. The crystal structure is stabilized by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Cobalt complexes are of great interest in coordination chemistry in relation to catalysis and enzymatic reactions, magnetism, and molecular architectures (Billson et al., 2000; Fritsky et al., 2003; Kotera et al., 2003). Cobalt complexes with benzoic acid and various N-heterocyclic compounds or amines have been reported (Brechin et al., 1996; Saussine et al., 1985; Singh et al., 2005; Yamami et al., 1997). As an extension of this work, the crystal structure of the title compound, (I) (Fig. 1), is reported here.

(I)

The $\mathrm{Co}^{\text {II }}$ ion in (I) is six-coordinated by four O atoms from two bidentate benzoate ligands and by two N atoms from two 2-aminopyridine molecules, resulting in a highly distorted cis$\mathrm{CoN}_{2} \mathrm{O}_{4}$ octahedron (Table 1). The $\mathrm{C}-\mathrm{O}$ bond lengths indicate that the negative charges of the benzoate $-\mathrm{CO}_{2}{ }^{-}$groups are completely delocalized. The acute $\mathrm{Co}-\mathrm{O}-\mathrm{C}$ bond angles cover the narrow range from 86.95 (9) to 91.49 (8) ${ }^{\circ}$.

In the crystal structure, the stabilization of (I) is supported by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

A mixture of $\mathrm{CoCO}_{3}(0.3 \mathrm{mmol}, 35.7 \mathrm{mg})$ and benzoic acid (0.1 mmol , 12.2 mg) in a $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ solution ($2: 1 \mathrm{v} / \mathrm{v}, 20 \mathrm{ml}$) was heated with stirring for 1 h in an open beaker, then 2-aminopyridine (0.1 mmol , 9.4 mg) was added. The solution was heated for 30 min and the
\qquad
remaining solid phase was filtered off. After allowing the solution to stand in air for 5 d , red block-shaped crystals of (I) were formed on slow evaporation of the solvent. Analysis found: C 58.88, H 4.56, N 11.47%; calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{CoN}_{4} \mathrm{O}_{4}$: C 58.90, H 4.53, N 11.45%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=489.39$
Monoclinic, $C 2 / c$
$a=25.097(5) \AA$
$b=10.991(2) \AA$
$c=17.499(3) \AA$
$\beta=101.28(3)^{\circ}$
$V=4733.7(15) \AA^{\circ}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.815, T_{\text {max }}=0.888$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0529 P)^{2}\right. \\
& \quad+1.2499 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.018 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

$Z=8$

$D_{x}=1.373 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, red
$0.28 \times 0.23 \times 0.16 \mathrm{~mm}$

19355 measured reflections
5137 independent reflections 4599 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.0^{\circ}$

RR($\left.F^{2}\right)=0.086=0.031$
$w R\left(F^{2}\right)=0.086$
$S=1.04$
5137 reflections
298 parameters
H -atom parameters constrained

Figure 1
The structure of (I), showing 35% probability displacement ellipsoids (arbitrary spheres for the H atoms).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXL97.

References

Billson, T. S., Crane, J. D., Fox, O. D. \& Heath, S. L. (2000). Inorg. Chem. Commun. 3, 718-720.
Brechin, E. K., Harris, S. G., Parsons, S. \& Winpenny, T. E. P. (1996). Chem. Comтии. pp. 1439-1440.
Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Fritsky, I. O., Ott, R., Pritzkow, H. \& Krämer, R. (2003). Inorg. Chim. Acta, 346, 111-118.
Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. \& Handa, M. (2003). Inorg. Chem. Commun. 6, 322-324.
Saussine, L., Brazi, E., Tobine, A., Mimoun, H., Fischer, J. \& Weiss, R. (1985). J. Am. Chem. Soc. 107, 3534-3540.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Singh, U. P., Babbar, P. \& Sharma, A. K. (2005). Inorg. Chim. Acta, 358, 271278.

Yamami, M., Tanaka, M., Sakiyama, H., Koga, T., Kobayashi, K., Miyasaka, H., Ohba, M. \& Okawa, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4595-4601.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

